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Last Time

@ Recall that the Heaviside step functions is defined by

(i) = {0, t<0

I, t>0.

MATH 20D Spring 2023 Lecture 21. May, 2023, San Diego 4/10



Last Time

@ Recall that the Heaviside step functions is defined by

M(I)_{o, t<0

I, t>0.

@ If f(z) is piecewise continuous of exponential order @ > 0, then

L{f(t = a)u(t —a)}(s) = e Z{f(1)}(s),

where a > 0 is constant.
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Last Time

@ Recall that the Heaviside step functions is defined by
0, t<0
) =
u(t) {1, t>0.
@ If f(z) is piecewise continuous of exponential order @ > 0, then
L{f(t = a)u(t — a)}(s) = e L{f(1)}(s),
where a > 0 is constant.

@ If F(s) admits an inverse Laplace transform then

fﬁl{ef’”F(s)}(t) =u(t— a)ffl {F($)}(t—a).
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Last Time

@ Recall that the Heaviside step functions is defined by
0, t<0
) =
u(t) {1, t>0.
@ If f(z) is piecewise continuous of exponential order @ > 0, then
L{f(t = a)u(t — a)}(s) = e L{f(1)}(s),
where a > 0 is constant.

@ If F(s) admits an inverse Laplace transform then

Zﬁl{ef’”F(s)}(t) =u(t— a)(,f*l {F($)}(t—a).

Example
Calculate

@ ZPui-D)) ) 2 ),
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Consider the initial value problem

0 0<r<?2
" / _ >
Y3y +2y_{e3<’2), 2 <t
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Consider the initial value problem

0 0<r<2
/" / _ ’
y + 3y + 2)7 - {63(12)’ 2 <t

Solution Strategy: (Variation of Parameter + Solution Patching)

@ Find a solution y,(¢) to the homogeneous IVP
Y'+3' +2y=0,  y(0)=2, y(0)=-3.
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Consider the initial value problem

0 0<r<?2
' / _ l
Yo+ +2y_{e3(’2), 2 <t

Solution Strategy: (Variation of Parameter + Solution Patching)

@ Find a solution y,(¢) to the homogeneous IVP
Y'+3' +2y=0,  y(0)=2, y(0)=-3.

Then y(7) solves the initial value problem (1) on the domain 0 < ¢ < 2.
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Consider the initial value problem

0 0<r<?2
" / _ >
Y3y +2y_{e3<’2), 2 <t

Solution Strategy: (Variation of Parameter + Solution Patching)

@ Find a solution y,(¢) to the homogeneous IVP
Y +3 +2y=0, y0)=2, y(0)=-3.
Then y(7) solves the initial value problem (1) on the domain 0 < ¢ < 2.
@ Find a solution u(7) to the inhomogeneous IVP
W +3u 4+ 2u = e_3('_2), u(2) = ys01(2), “1(2) = ygol(z)'
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Consider the initial value problem

0 0<r<2
" ’ _ > _ ’ _
¥+ 3y +2y—{e3<,2)’ s, o YO=2y(O)=-3 (1)

Solution Strategy: (Variation of Parameter + Solution Patching)

@ Find a solution y,(¢) to the homogeneous IVP
Y +3 +2y=0, y0)=2, y(0)=-3.
Then y(7) solves the initial value problem (1) on the domain 0 < ¢ < 2.
@ Find a solution u(7) to the inhomogeneous IVP
W +3u +2u= e_3('_2), u(2) = ys01(2), “1(2) = ygol(z)'

@ Patch the the functions yo (7) and ug, () into the function

ysol(f), 0<1<2,
y(t) =
usol([), t>72

which solve the initial value problem (1)
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Initial Value Problems with Discontinuous Inhomogeneous Terms |

Laplace transform gives an efficient approach to the IVP on the previous slide.
Example
Using the method of Laplace transform, solve the initial value problem

0, 0<r<?2

" 3 / 2 —
Yoy {e3(’2), 2<t
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o Initial Value Problems with Discontinuous Inhomogeneous Terms

@ The Dirac Delta Function

«O>» «F»r « > « E» Q>



Impulses

The Heaviside step function is useful to model thing that turn off/on. One often
also needs to model impulses where something noticeable happens during a
negligible period of time, e.g. a mass spring system being struck by a hammer.
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Impulses

The Heaviside step function is useful to model thing that turn off/on. One often
also needs to model impulses where something noticeable happens during a
negligible period of time, e.g. a mass spring system being struck by a hammer.

@ For & > 0 consider the function

6(3,1)=M= {81, O<t<e

£ 0, elsewhere
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The Heaviside step function is useful to model thing that turn off/on. One often
also needs to model impulses where something noticeable happens during a
negligible period of time, e.g. a mass spring system being struck by a hammer.

@ For & > 0 consider the function

6(3,1)=M= {81, O<t<e

£ 0, elsewhere

@ When ¢ > 0is small, 67 (&, ) models a short sharp change.
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Impulses

The Heaviside step function is useful to model thing that turn off/on. One often
also needs to model impulses where something noticeable happens during a
negligible period of time, e.g. a mass spring system being struck by a hammer.

@ For & > 0 consider the function

6(3,1)=M= {81, O<t<e

£ 0, elsewhere

@ When ¢ > 0is small, 67 (&, ) models a short sharp change.

@ This change is “noticeable" since

0 &
d
J 6(s,t)dt=f 4
0 0o €
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The Dirac Delta Function

@ Notice that lim,_,+ 6(e&,7) = 0 for all > 0 however

Q0
lim o(e, t)dt = 1.
e—0% Jo
Example
Show that lim,_,o+ -Z{6(&,1)}(s) = 1. J

@ Whilst we can make sense of the limits above, it is much less clear how we
could assign meaning to the limit §(¢) := lim,_,¢+ §(&, 7).
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The Dirac Delta Function

@ Notice that lim,_,¢+ 6(e,¢) = 0 for all # > 0 however

Q0
lim é(e,t)dt = 1.
e—0% Jo
Example
Show that lim,_,o+ -Z{6(&,1)}(s) = 1. J

@ Whilst we can make sense of the limits above, it is much less clear how we
could assign meaning to the limit §(¢) := lim,_,¢+ §(&, 7).

Definition
The Dirac Delta Function §: [0,00) — R u {0} is the unique “function” such that
0, >0
5(1) == lim 8(s,1) = { g

-0t o, t=0

and §" 6(1)dt = 1.

v

MATH 20D Spring 2023 Lecture 21. May, 2023, San Diego 9/10



Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies,
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Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)
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Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)

@ So

f " pwsdn = f " p(0)6(0)ds = £0) j " syt = £(0).

0 0
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Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)

@ So
f f(t)é(t)dt:f f(0)6(t)dt:f(0)f o(t)dt = £(0).
0 0

0

@ Similarly, if a > 0 is constant then

JOC f()6(t — a)dt = JOO f(a)é(t — a)dt = f(a) Jm 8(t— a)dt = f(a).
0 0

0
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Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)

@ So

foc f(n)o(n)dr = ro f(0)s(r)dt = £(0) ro o(r)dt = £(0).
0 0

0

@ Similarly, if a > 0 is constant then

JOC f()6(t — a)dt = foo f(a)é(t — a)dt = f(a) Jm 8(t— a)dt = f(a).
0 0

0

Example
(a) Evaluate §” sin(3¢)s(t — x/2)dt.
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Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)

@ So

foc f(n)o(n)dr = ro f(0)s(r)dt = £(0) ro o(r)dt = £(0).
0 0

0

@ Similarly, if a > 0 is constant then

JOC f()6(t — a)dt = foo f(a)é(t — a)dt = f(a) Jm 8(t— a)dt = f(a).
0 0

0

Example

(a) Evaluate §” sin(3¢)d(t — x/2)dt.
(b) Calculate . Z{r*5(t — 3)}(s) and Z{e'5(t — 3)}(s)

MATH 20D Spring 2023 Lecture 21. May, 2023, San Diego 10/10



Properties Dirac Delta Function

@ Since 6(¢) = 0 for t > 0, §(¢) “samples" the value at ¢ = 0 of any function it
multiplies, i.e. if f: [0,00) — R is continuous at ¢ = 0 then

S().f (1) = £(0)6(7)

@ So

foc f(n)o(n)dr = ro f(0)s(r)dt = £(0) ro o(r)dt = £(0).
0 0

0

@ Similarly, if a > 0 is constant then

JOC f()6(t — a)dt = foo f(a)é(t — a)dt = f(a) Jm 8(t— a)dt = f(a).
0 0

0

Example

(a) Evaluate §” sin(3¢)d(t — x/2)dt.
(b) Calculate . Z{r*5(t — 3)}(s) and Z{e'5(t — 3)}(s)
(c) Leta = 0 be constant. Show that . Z{6(r — a)}(s) = e~ .
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